
Extending a scientific workflow 
engine with streaming I/O 

capabilities: DAGonStar and 
CAPIO

Simone Perrotta, Ciro Giuseppe De Vita, Gennaro Mellone, Marco Edoardo Santimaria, 
Giuseppe Salvi, Marco Lapegna, Massimo Torquati, Angelo Ciaramella



Introduction
1.1 Introducing data-intensive workflows

Data-intensive workflows:
● Involves complex sequences of computational tasks;
● Requires resilient systems for effective data flow and processing.

Challenges with Traditional Workflow Engines:
● Significant limitations with real-time data streams;
● Struggles with in-memory data management;
● Increasing data complexity and scale exacerbate these issues.



Workflow Engines (WFEs):

● Designed to manage complex scientific workflows;
● Example: DAGonStar.

Functionality:

● Use directed acyclic graphs (DAGs) to ensure correct data flow;
● Enable parallel task execution.

Limitations:

● Performance can be limited by reliance on traditional disk-based storage.

Introducing WFEs and DAGonStar



CAPIO:

● Innovative in-memory file storage system.

Purpose:

● Overcomes limitations of disk-based storage in high-performance computing.

Benefits:

● Faster data access;
● Reduced latency crucial for real-time processing.

Architecture:

● Supports concurrent access;
● Facilitates parallel processing;
● Ideal for managing high-speed data streams in modern scientific workflows.

Introducing CAPIO



● Workflow Description: DAGonStar uses the workflow://schema to describe workflows as 
dataflows. This means that by analyzing the data flow processed and managed by the various 
tasks, we can perform I/O overlap to save a significant percentage of the total execution time.

Why integrate DAGonStar with CAPIO?

Normal batch execution without I/O overlap

Time



● Current State: DAGonStar with workflow://schema, no I/O overlap.
● Integration Goal: Combine DAGonStar's robust workflow description with CAPIO’s efficient 

streaming I/O.
● Expected Outcome: Achieve simultaneous computation and I/O for improved performance and 

efficiency.

Timeline of integration



Integration of CAPIO with DAGonStar:

● Creates a hybrid system.

Combination:

● Efficient task orchestration (DAGonStar);
● High-speed, low-latency data handling (CAPIO).

Paper Details:

● Design and implementation;
● Highlighting how CAPIO’s streaming I/O capabilities enhance DAGonStar’s 

performance.

Primary Objective:

● Demonstrate significant performance improvement;
● Particularly for real-time data processing in scientific workflows.

Our objective



Design and architecture

Principal components:
● Runtime;
● Service;
● Workflow:// Schema;
● Garbage collector;
● Stager;

DAGonStar’s architecture



CAPIO’s architecture

● The CAPIO server, which will run on each node belonging to the cluster. A JSON 
configuration file must be passed to this during execution, which indicates how and where 
the streaming must be carried out, and will generally be produced by users or software;

● The CAPIO system call intercept library, a library that allows the CAPIO server to stream by 
intercepting essential posix calls regarding file management.



● DAGonStar batch tasks 
generate the JSON file based 
on the dependencies 
between tasks, identified 
thanks to the workflow:// 
Schema;

● This JSON file is used by the 
CAPIO server for 
configuration;

● Tasks A and B make up a 
pipeline in which A produces 
files and B reads them;

● Posix calls made on these 
output files will be 
intercepted by the CAPIO 
server, allowing it to process 
this data in RAM.

Our architecture



Case studies

The presented case studies all focus on the use of a pipeline, which includes:

● Producer A: which generates numbers by inserting them into files;
● Consumer B: which reads these files, sums all the numbers within each file, calculates the 

average, and saves it in another file. 
● In our scenario, there is also another component of the pipeline, C:  which opens all the files 

produced by B, and computes the average of all the individual averages.

A B C

Introducing the pipeline

produces the 
numbers for each file

sums and then 
calculates the average 
of all the numbers in 
each file

do the 
average of 
all the 
averages 
produced 
by B



The implementation of the pipeline was carried out following these steps:
● Implementation of the pipeline composed of two C programs, namely A and B in CAPIO;
● Identify the points in DAGonStar to modify for integration purposes and apply these 

improvements;
● Create two tasks that make up the pipeline in DAGonStar plus another task that saves the results 

permanently;
● Run the pipeline workflow and collect timing results for comparison.

Pipeline implementation



There were various types of pipelines tested, but they all have in common the type of numbers within the 
files, as they are all between 0 and 1 with a decimal precision of 6 digits. The specific types of pipelines 
experimented with are as follows:
● 10 files with 1 million numbers per file;
● 10 files with 2 million numbers per file;
● 20 files with 1 million numbers per file;
● 20 files with 2 million numbers per file;
● 30 files with 1 million numbers per file;
● 30 files with 2 million numbers per file;
● 40 files with 1 million numbers per file;
● 40 files with 2 million numbers per file.

Experimented pipelines



Evaluation and results
We tested the pipeline in two scenarios: 
● DAGonStar running bash scripts sequentially;
● DAGonStar with CAPIO integration. 

Execution times were recorded from the start of Program A to the end of Program C to compare 
performance gains.



Conclusions
This work was carried out according to the following points:

● Exploration: Examined workflows, WMS, and DAGonStar;
● Study: Analyzed CAPIO middleware;
● Integration: Integrated CAPIO into DAGonStar.

The results of this work have shown that:

● Execution times were reduced by 20% to 32%;
● There are significant benefits of using RAM-based file systems in Workflow Management 

Systems.


